New solutions of reflection equation derived from type B BMW algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 295945
(http://iopscience.iop.org/0305-4470/29/18/023)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 02:31

Please note that terms and conditions apply.

New solutions of reflection equation derived from type B BMW algebras

Reinhard Häring-Oldenburg
Mathematisches Institut, SFB 170, Bunsenstrasse 3-5, 37073 Göttingen, Germany \dagger

Received 25 March 1996, in final form 17 June 1996

Abstract

We use B-type knot theory to find new solutions of Sklyanin's reflection equation in a systematic way. This generalizes the well known Baxterization of Birman-Wenzl algebras and should describe integrable systems which are restricted to a half plane.

1. Introduction

Two-dimensional integrable systems are described by solutions of the spectral parameter dependent Yang-Baxter equation (YBE). With multiplicatively written spectral parameter it reads

$$
\begin{equation*}
R_{1}\left(t_{1}\right) R_{2}\left(t_{1} t_{2}\right) R_{1}\left(t_{2}\right)=R_{2}\left(t_{2}\right) R_{1}\left(t_{1} t_{2}\right) R_{2}\left(t_{1}\right) \quad \forall t_{1}, t_{2} \tag{1}
\end{equation*}
$$

This equation lives on $V \otimes V \otimes V$ where $R \in \operatorname{End}(V \otimes V)$ acts according to its subscript either in the first and second or second and third factor.

If the system is restricted to a half plane with reflecting boundary then a second matrix is needed describing the boundary particle interaction. That is, we need a spectral parameter dependent $K(t) \in \operatorname{End}(V)$ satisfying Sklyanin's reflection equation [8]
$R\left(t_{1} / t_{2}\right)\left(K\left(t_{1}\right) \otimes 1\right) R\left(t_{1} t_{2}\right)\left(K\left(t_{2}\right) \otimes 1\right)=\left(K\left(t_{2}\right) \otimes 1\right) R\left(t_{1} t_{2}\right)\left(K\left(t_{1}\right) \otimes 1\right) R\left(t_{1} / t_{2}\right)$.
This paper presents a solution of equations (1), (2) where $R(t)$ is the usual Baxterization [5] of the R-matrix of orthogonal quantum groups. $K(t)$ is constructed algebraically from representations of a new generalization of the Birman-Wenzl algebra which is associated with the Coxeter type B braid group. It is worth noting that the type B Hecke algebra does not allow analogous Baxterization [7]. The problem of Baxterization has been treated in greater generality by Bellon et al [1]. However, we hope that our explicit solution may nevertheless be interesting.

2. The restricted type B Birman-Wenzl algebra

For every root system there exists an associated Weyl group (Coxeter group). For type A_{n} root systems it is the permutation group. For type B_{n} it is a semi-direct product of a permutation group with \mathbb{Z}_{2}^{n}. It has generators $\tau_{0}, \tau_{1}, \ldots, \tau_{n-1}$ and relations $\tau_{i}^{2}=1,|i-j|>$ $1 \Rightarrow \tau_{i} \tau_{j}=\tau_{j} \tau_{i}, i+1=j>0 \Rightarrow \tau_{j} \tau_{i} \tau_{j}=\tau_{i} \tau_{j} \tau_{i}$ and $\tau_{0} \tau_{1} \tau_{0} \tau_{1}=\tau_{1} \tau_{0} \tau_{1} \tau_{0}$. Omitting the quadratic relations from the Coxeter presentations of these groups one obtains the braid
\dagger E-mail: haering@cfgauss.uni-math.gwdg.de
group of the root system. tom Dieck initiated in [3] a systematic study of these braid groups. Among the quotients of the group algebra of the type B braid group there is the following restricted BMW algebra.
Definition 1. The restricted type B Birman-Wenzl algebra BB_{n} is defined to have invertible generators $\left\{Y, X_{1}, \ldots, X_{n-1}\right\}$ and parameters λ, q, q_{1}. Using the definitions

$$
\begin{align*}
& \delta:=q-q^{-1} \quad x:=1-\frac{\lambda-\lambda^{-1}}{\delta} \quad q_{0}:=q^{-1} \tag{3}\\
& e_{i}:=1-\frac{X_{i}-X_{i}^{-1}}{q-q^{-1}} \quad i=1, \ldots, n-1 \tag{4}
\end{align*}
$$

the relations are

$$
\begin{align*}
& X_{i} X_{i}^{-1}=X_{i}^{-1} X_{i}=1 \tag{5}\\
& X_{i} X_{j}=X_{j} X_{i} \quad|i-j|>1 \tag{6}\\
& X_{i} X_{j} X_{i}=X_{j} X_{i} X_{j} \quad|i-j|=1 \tag{7}\\
& X_{i} e_{i}=e_{i} X_{i}=\lambda e_{i} \tag{8}\\
& e_{i} X_{i-1}^{ \pm 1} e_{i}=\lambda^{\mp 1} e_{i} \tag{9}\\
& X_{1} Y X_{1} Y=Y X_{1} Y X_{1} \tag{10}\\
& Y^{2}=q_{1} Y+q_{0} \tag{11}\\
& Y X_{1} Y e_{1}=e_{1} \tag{12}\\
& Y X_{i}=X_{i} Y \quad i>1 . \tag{13}
\end{align*}
$$

The term 'restricted' refers to the fact that Y satisfies a quadratic relation while the X_{i} satisfy cubic polynomials. The value of q_{0} is enforced by (12). The algebra BB_{n} is studied in detail in [6].

It should be noted that throughout this paper we are working with generic parameters. For non-generic values one would have to introduce the e_{i} as generators in their own right and take care of poles.

It is obvious that X_{1}, \ldots, X_{n-1} generate a standard Birman-Wenzl algebra [9] (which is of type A).
Lemma 1.

$$
\begin{align*}
& e_{i}^{2}=x e_{i} \tag{14}\\
& X_{i}^{-1}=X_{i}-\delta+\delta e_{i} \tag{15}\\
& X_{i}^{2}=1+\delta X_{i}-\delta \lambda e_{i} \tag{16}\\
& 0=\left(X_{i}-\lambda\right)\left(X_{i}+q^{-1}\right)\left(X_{i}-q\right) \tag{17}\\
& e_{i} e_{j}=e_{j} e_{i} \quad|i-j|>1 \tag{18}\\
& Y^{-1}=q_{0}^{-1} Y-q_{1} q_{0}^{-1} \tag{19}\\
& 0=\left[X_{1} Y X_{1} Y,\left\{Y, e_{1}, X_{1}\right\}\right] \tag{20}\\
& e_{1} Y X_{1} Y=e_{1} \tag{21}\\
& e_{1} Y e_{1}=x q_{1}\left(1-q_{0} \lambda\right)^{-1} e_{1} . \tag{22}
\end{align*}
$$

The proofs are straightforward with the possible exception of the last equation:

$$
\begin{array}{r}
e_{1} Y e_{1}=e_{1} Y Y X_{1} Y e_{1}=q_{1} e_{1} Y X_{1} Y e_{1}+q_{0} e_{1} X_{1} Y e_{1}=q_{1} x e_{1}+q_{0} \lambda e_{1} Y e_{1} \\
\Rightarrow\left(1-q_{0} \lambda\right) e_{1} Y e_{1}=q_{1} x e_{1} \Rightarrow e_{1} Y e_{1}=q_{1} x\left(1-q_{0} \lambda\right)^{-1} e_{1}
\end{array}
$$

3. Solution of the reflection equation

Solutions of the Yang-Baxter equation can be obtained from the standard (type A) BirmanWenzl algebra by the following Baxterization procedure [2]:

$$
\begin{equation*}
R_{i}(t)=-\delta t\left(t+q \lambda^{-1}\right)+(t-1)\left(t+q \lambda^{-1}\right) X_{i}+\delta t(t-1) e_{i} \tag{23}
\end{equation*}
$$

To also find a solution of (2) we make the ansatz

$$
\begin{equation*}
K(t)=f_{0}(t)+f_{1}(t) Y \tag{24}
\end{equation*}
$$

Using the relations of the previous section (equations (12) and (21) are multiplied with Y^{-1} and then used) it is then a tedious but straightforward computation to reduce (2) to

$$
\begin{aligned}
\operatorname{LHS}(2)-\operatorname{RHS} & (2)=\left(1-q^{2}\right)\left(t_{1} f_{0}\left(t_{2}\right) f_{1}\left(t_{1}\right)-t_{1} t_{2}^{2} f_{0}\left(t_{2}\right) f_{1}\left(t_{1}\right)-t_{2} f_{0}\left(t_{1}\right) f_{1}\left(t_{2}\right)\right. \\
& \left.+t_{1}^{2} t_{2} f_{0}\left(t_{1}\right) f_{1}\left(t_{2}\right)+q_{1} t_{1}^{2} t_{2} f_{1}\left(t_{1}\right) f_{1}\left(t_{2}\right)-q_{1} t_{1} t_{2}^{2} f_{1}\left(t_{1}\right) f_{1}\left(t_{2}\right)\right) \\
& \left(-\left(\lambda q^{3} t_{1} Y e_{1}\right)+\lambda q^{3} t_{2} Y e_{1}+\lambda^{2} t_{1}^{2} t_{2} Y e_{1}+\lambda q t_{1}^{2} t_{2} Y e_{1}-\lambda^{2} q^{2} t_{1}^{2} t_{2} Y e_{1}\right. \\
& -\lambda q^{3} t_{1} t_{2}^{2} Y e_{1}-\lambda q^{2} t_{1} Y X_{1}-q^{3} t_{2} Y X_{1}-\lambda^{2} q t_{1}^{2} t_{2} Y X_{1}-\lambda q^{2} t_{1} t_{2}^{2} Y X_{1} \\
& +\lambda q^{3} t_{1} e_{1} Y-\lambda q^{3} t_{2} e_{1} Y-\lambda^{2} t_{1}^{2} t_{2} e_{1} Y-\lambda q t_{1}^{2} t_{2} e_{1} Y+\lambda^{2} q^{2} t_{1}^{2} t_{2} e_{1} Y \\
& \left.+\lambda q^{3} t_{1} t_{2}^{2} e_{1} Y+\lambda q^{2} t_{1} X_{1} Y+q^{3} t_{2} X_{1} Y+\lambda^{2} q t_{1}^{2} t_{2} X_{1} Y+\lambda q^{2} t_{1} t_{2}^{2} X_{1} Y\right)
\end{aligned}
$$

To make this vanish we take the second factor which contains all the occurrences of f_{0}, f_{1} and divide it by $f_{0}\left(t_{2}\right) f_{1}\left(t_{1}\right)$:
$0=t_{1}-t_{1} t_{2}^{2}+\left(q_{1} t_{2} t_{1}^{2}-q_{1} t_{2}^{2} t_{1}\right) f_{1}\left(t_{2}\right) f_{0}\left(t_{2}\right)^{-1}+\left(t_{2} t_{1}^{2}-t_{2}\right) f_{0}\left(t_{1}\right) f_{1}\left(t_{1}\right)^{-1} f_{0}\left(t_{2}\right)^{-1} f_{1}\left(t_{2}\right)$.
Introducing $F(t):=f_{0}(t) f_{1}(t)^{-1}$ and multiplying with $F\left(t_{2}\right)$ we obtain

$$
\left(t_{1} F\left(t_{2}\right)-t_{2}^{2} t_{1}\left(q_{1}+F\left(t_{2}\right)\right)\right)-\left(t_{2} F\left(t_{1}\right)-t_{1}^{2} t_{2}\left(q_{1}+F\left(t_{1}\right)\right)\right)=0
$$

We require $0=t_{1} F\left(t_{2}\right)-t_{2}^{2} t_{1}\left(q_{1}+F\left(t_{2}\right)\right)$ and find $F(t)=t^{2} q_{1}\left(1-t^{2}\right)^{-1}$.
Proposition 2. $K(t)=\left(t^{2} q_{1}\left(1-t^{2}\right)^{-1}+Y\right) f_{1}(t)$ is (for all $\left.f_{1}\right)$ a solution of the reflection equation (2).

4. Tensor representations

In [4] tom Dieck found representations of BB_{n} acting on n-fold tensor products of representation spaces of orthogonal quantum groups. Following Wenzl he used the R matrix of the quantum group $U_{q}\left(s o_{N}\right), N=2 m+1, m \in \mathbb{N}$. We denote its N dimensional defining representation by $V=\left\{v_{i} \mid i \in I\right\}$. The index set is $I=$ $\{-N+2,-N+4, \ldots,-3,-1,0,1,3, \ldots, N-2\}$. Denote by $f_{i, j}$ the matrix with a single entry of 1 at position i, j. Then the R-matrix reads

$$
\begin{align*}
R=\sum_{i \neq 0}\left(q f_{i, i}\right. & \left.\otimes f_{i, i}+q^{-1} f_{i,-i} \otimes f_{-i, i}\right)+f_{0,0} \otimes f_{0,0}+\sum_{i \neq j,-j} f_{i, j} \otimes f_{j, i} \\
& +\left(q-q^{-1}\right)\left(\sum_{i<j} f_{i, i} \otimes f_{j, j}-\sum_{j<-i} q^{\frac{i+j}{2}} f_{i, j} \otimes f_{-i,-j}\right) \tag{25}
\end{align*}
$$

From $E=1-\left(R-R^{-1}\right) / \delta$ one obtains

$$
\begin{equation*}
E=\sum_{i, j} q^{i+j / 2} f_{i, j} \otimes f_{-i,-j} \tag{26}
\end{equation*}
$$

$E^{2}=x E$ with $x=\sum_{i} q^{i}$ and thus $\lambda=q^{1-N}$.
The following matrix was found by tom Dieck:

$$
\begin{equation*}
F=-f_{0,0}+q^{-1 / 2} \sum_{i \neq 0} f_{-i, i}+\left(q^{-1}-1\right) \sum_{i>0} f_{i, i} \tag{27}
\end{equation*}
$$

It is shown in [4] that it fulfills $F^{2}=\left(q^{-1}-1\right) F+q^{-1}$ and $(F \otimes 1) B(F \otimes 1) B=$ $B(F \otimes 1) B(F \otimes 1)$ as well as $E=E(F \otimes 1) B(F \otimes 1)$. Hence a representation of BB_{n} with parameters $q_{1}=\left(q^{-1}-1\right), \lambda=q^{1-N}$ on the n fold tensor product is given by $\phi: \mathrm{B}^{*} \mathrm{~B}_{n} \rightarrow \operatorname{End}\left(V^{\otimes n}\right), Y \mapsto F \otimes 1 \cdots \otimes 1, X_{i} \mapsto 1 \otimes \cdots \otimes 1 \otimes B \otimes 1 \cdots \otimes 1$.

Combining this with the results of the previous section we obtain the matrix solution of the reflection equation.

References

[1] Bellon M P, Maillard J-M and Viallet C-M 1991 Phys. Rev. Lett. 67 1371; Phys. Lett. 159A 233, 221
[2] Cheng Y et al 1992 New Solutions of YBE and new link polynomials J. Knot Theor. Ramifications 1 (1) 31-46
[3] tom Dieck T 1993 Knotentheorien und Wurzelsysteme I, II Math. Gottingensis 2144
[4] tom Dieck T 1995 On tensor representations of knot algebras Math. Gottingensis 45
[5] Jones V 1989 Commun. Math. Phys. 125459
[6] Häring-Oldenburg R Birman-Wenzl-Algebren vom Typ B PhD Thesis in preparation
[7] Levy D and Martin P 1994 Hecke algebra solutions of the reflection equation J. Phys. A. Math. Gen. 27 L521-6
[8] Sklyanin E K 1988 J. Phys. A. Math. Gen. 212375
[9] Wenzl H 1990 Quantum groups and subfactors of type B, C, and D Commun. Math. Phys. 133 383-432

