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Abstract. We use B-type knot theory to find new solutions of Sklyanin’s reflection equation
in a systematic way. This generalizes the well known Baxterization of Birman–Wenzl algebras
and should describe integrable systems which are restricted to a half plane.

1. Introduction

Two-dimensional integrable systems are described by solutions of the spectral parameter
dependent Yang–Baxter equation (YBE). With multiplicatively written spectral parameter it
reads

R1(t1)R2(t1t2)R1(t2) = R2(t2)R1(t1t2)R2(t1) ∀t1, t2 . (1)

This equation lives onV ⊗ V ⊗ V whereR ∈ End(V ⊗ V ) acts according to its subscript
either in the first and second or second and third factor.

If the system is restricted to a half plane with reflecting boundary then a second matrix
is needed describing the boundary particle interaction. That is, we need a spectral parameter
dependentK(t) ∈ End(V ) satisfying Sklyanin’s reflection equation [8]

R(t1/t2)(K(t1) ⊗ 1)R(t1t2)(K(t2) ⊗ 1) = (K(t2) ⊗ 1)R(t1t2)(K(t1) ⊗ 1)R(t1/t2) . (2)

This paper presents a solution of equations (1), (2) whereR(t) is the usual Baxterization
[5] of the R-matrix of orthogonal quantum groups.K(t) is constructed algebraically from
representations of a new generalization of the Birman–Wenzl algebra which is associated
with the Coxeter type B braid group. It is worth noting that the type B Hecke algebra does
not allow analogous Baxterization [7]. The problem of Baxterization has been treated in
greater generality by Bellonet al [1]. However, we hope that our explicit solution may
nevertheless be interesting.

2. The restricted type B Birman–Wenzl algebra

For every root system there exists an associated Weyl group (Coxeter group). For type
An root systems it is the permutation group. For typeBn it is a semi-direct product of a
permutation group withZn

2. It has generatorsτ0, τ1, . . . , τn−1 and relationsτ 2
i = 1, |i−j | >

1 ⇒ τiτj = τj τi, i + 1 = j > 0 ⇒ τj τiτj = τiτj τi and τ0τ1τ0τ1 = τ1τ0τ1τ0. Omitting the
quadratic relations from the Coxeter presentations of these groups one obtains the braid
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group of the root system. tom Dieck initiated in [3] a systematic study of these braid
groups. Among the quotients of the group algebra of the type B braid group there is the
following restricted BMW algebra.

Definition 1. The restricted type B Birman–Wenzl algebra BBn is defined to have invertible
generators{Y, X1, . . . , Xn−1} and parametersλ, q, q1. Using the definitions

δ := q − q−1 x := 1 − λ − λ−1

δ
q0 := q−1 (3)

ei := 1 − Xi − X−1
i

q − q−1
i = 1, . . . , n − 1 (4)

the relations are

XiX
−1
i = X−1

i Xi = 1 (5)

XiXj = XjXi |i − j | > 1 (6)

XiXjXi = XjXiXj |i − j | = 1 (7)

Xiei = eiXi = λei (8)

eiX
±1
i−1ei = λ∓1ei (9)

X1YX1Y = YX1YX1 (10)

Y 2 = q1Y + q0 (11)

YX1Ye1 = e1 (12)

YXi = XiY i > 1 . (13)

The term ‘restricted’ refers to the fact thatY satisfies a quadratic relation while theXi

satisfy cubic polynomials. The value ofq0 is enforced by (12). The algebra BBn is studied
in detail in [6].

It should be noted that throughout this paper we are working with generic parameters.
For non-generic values one would have to introduce theei as generators in their own right
and take care of poles.

It is obvious thatX1, . . . , Xn−1 generate a standard Birman–Wenzl algebra [9] (which
is of type A).

Lemma 1.

e2
i = xei (14)

X−1
i = Xi − δ + δei (15)

X2
i = 1 + δXi − δλei (16)

0 = (Xi − λ)(Xi + q−1)(Xi − q) (17)

eiej = ej ei |i − j | > 1 (18)

Y−1 = q−1
0 Y − q1q

−1
0 (19)

0 = [X1YX1Y, {Y, e1, X1}] (20)

e1YX1Y = e1 (21)

e1Ye1 = xq1(1 − q0λ)−1e1 . (22)
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The proofs are straightforward with the possible exception of the last equation:

e1Ye1 = e1YYX1Ye1 = q1e1YX1Ye1 + q0e1X1Ye1 = q1xe1 + q0λe1Ye1

⇒ (1 − q0λ)e1Ye1 = q1xe1 ⇒ e1Ye1 = q1x(1 − q0λ)−1e1 .

3. Solution of the reflection equation

Solutions of the Yang–Baxter equation can be obtained from the standard (type A) Birman–
Wenzl algebra by the following Baxterization procedure [2]:

Ri(t) = −δt (t + qλ−1) + (t − 1)(t + qλ−1)Xi + δt (t − 1)ei . (23)

To also find a solution of (2) we make the ansatz

K(t) = f0(t) + f1(t)Y . (24)

Using the relations of the previous section (equations (12) and (21) are multiplied withY−1

and then used) it is then a tedious but straightforward computation to reduce (2) to

LHS(2)− RHS(2)= (1 − q2)(t1f0(t2)f1(t1) − t1t
2
2f0(t2)f1(t1) − t2f0(t1)f1(t2)

+t2
1 t2f0(t1)f1(t2) + q1t

2
1 t2f1(t1)f1(t2) − q1t1t

2
2f1(t1)f1(t2))(−(λq3t1Ye1) + λq3t2Ye1 + λ2t2

1 t2Ye1 + λqt2
1 t2Ye1 − λ2q2t2

1 t2Ye1

−λq3t1t
2
2Ye1 − λq2t1YX1 − q3t2YX1 − λ2qt2

1 t2YX1 − λq2t1t
2
2YX1

+λq3t1e1Y − λq3t2e1Y − λ2t2
1 t2e1Y − λqt2

1 t2e1Y + λ2q2t2
1 t2e1Y

+λq3t1t
2
2e1Y + λq2t1X1Y + q3t2X1Y + λ2qt2

1 t2X1Y + λq2t1t
2
2X1Y

)
.

To make this vanish we take the second factor which contains all the occurrences of
f0, f1 and divide it byf0(t2)f1(t1):

0 = t1 − t1t
2
2 + (q1t2t

2
1 − q1t

2
2 t1)f1(t2)f0(t2)

−1 + (t2t
2
1 − t2)f0(t1)f1(t1)

−1f0(t2)
−1f1(t2) .

IntroducingF(t) := f0(t)f1(t)
−1 and multiplying withF(t2) we obtain

(t1F(t2) − t2
2 t1(q1 + F(t2))) − (t2F(t1) − t2

1 t2(q1 + F(t1))) = 0 .

We require 0= t1F(t2) − t2
2 t1(q1 + F(t2)) and findF(t) = t2q1(1 − t2)−1.

Proposition 2.K(t) = (t2q1(1 − t2)−1 + Y )f1(t) is (for all f1) a solution of the reflection
equation (2).

4. Tensor representations

In [4] tom Dieck found representations of BBn acting on n-fold tensor products of
representation spaces of orthogonal quantum groups. Following Wenzl he used theR-
matrix of the quantum groupUq(soN), N = 2m + 1, m ∈ N. We denote itsN -
dimensional defining representation byV = {vi | i ∈ I }. The index set isI =
{−N + 2, −N + 4, . . . ,−3, −1, 0, 1, 3, . . . , N − 2}. Denote byfi,j the matrix with a
single entry of 1 at positioni, j . Then theR-matrix reads

R =
∑
i 6=0

(qfi,i ⊗ fi,i + q−1fi,−i ⊗ f−i,i ) + f0,0 ⊗ f0,0 +
∑

i 6=j,−j

fi,j ⊗ fj,i

+(q − q−1)

(∑
i<j

fi,i ⊗ fj,j −
∑
j<−i

q
i+j

2 fi,j ⊗ f−i,−j

)
. (25)
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From E = 1 − (R − R−1)/δ one obtains

E =
∑
i,j

qi+j/2fi,j ⊗ f−i,−j . (26)

E2 = xE with x = ∑
i q

i and thusλ = q1−N .
The following matrix was found by tom Dieck:

F = −f0,0 + q−1/2
∑
i 6=0

f−i,i + (q−1 − 1)
∑
i>0

fi,i . (27)

It is shown in [4] that it fulfills F 2 = (q−1 − 1)F + q−1 and (F ⊗ 1)B(F ⊗ 1)B =
B(F ⊗ 1)B(F ⊗ 1) as well asE = E(F ⊗ 1)B(F ⊗ 1). Hence a representation of BBn

with parametersq1 = (q−1 − 1), λ = q1−N on the n fold tensor product is given by
φ : B∗Bn → End(V ⊗n), Y 7→ F ⊗ 1 · · · ⊗ 1, Xi 7→ 1 ⊗ · · · ⊗ 1 ⊗ B ⊗ 1 · · · ⊗ 1.

Combining this with the results of the previous section we obtain the matrix solution of
the reflection equation.
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